Make use of the identity: z⋅z∗=|z|2.
(z−5−i)(z−5−i)∗=25
Let z = x + y i.
((x−5)+(y−1)i)((x−5)+(1−y)i)=25(x−5)2+(y−1)2=25
So the equation |z - 5 - i| = 5 actually represents a circle centered at z = 5 + i and with radius 5.
Expressing the given expression with x and y:
|z−1+2i|2+|z−9−4i|2=(x−1)2+(y+2)2+(x−9)2+(y−4)2=x2−2x+1+y2+4y+4+x2−18x+81+y2−8y+16=2x2+2y2−20x−4y+102=2(x2+y2−10x−2y+102)=2((x−5)2+(y−1)2+76)
And because (x−5)2+(y−1)2=25,
|z−1+2i|2+|z−9−4i|2=2(25+76)=202
So the minimum value is 202.