Make use of the identity: \(z\cdot z^{*} = |z|^2\).
\((z-5-i)(z-5-i)^* = 25\)
Let z = x + y i.
\(((x-5)+(y-1)i)((x-5)+(1-y)i) = 25\\ (x-5)^2 + (y-1)^2 = 25\)
So the equation |z - 5 - i| = 5 actually represents a circle centered at z = 5 + i and with radius 5.
Expressing the given expression with x and y:
\(|z-1+2i|^2 + |z-9-4i|^2\\ =(x-1)^2+(y+2)^2 + (x-9)^2 + (y-4)^2\\ = x^2-2x+1+y^2+4y+4+x^2-18x+81+y^2-8y+16\\ =2x^2+2y^2-20x-4y+102\\ =2(x^2+y^2-10x-2y+102)\\ =2((x-5)^2+(y-1)^2+76)\)
And because \((x-5)^2+(y-1)^2 = 25\),
\(|z-1+2i|^2 + |z-9-4i|^2\\ =2(25+76)\\ =202\)
So the minimum value is 202.