\(x^2+tx-10 = (x+a)(x+b)\\ x^2 + tx - 10 = x^2 + (a+b)x+ab\\ \therefore ab = -10\\ \text{For }a,b\in\mathbb Z,(a,b)=(10,-1),(5,-2),(2,-5),(1,-10),(-1,10),(-2,5),(-5,2),(-10,1)\\ \therefore t = 9,3,-3,-9\\ \text{Product of all t} = 9^2\cdot 3^2 = 729\)
.