Let xy=z.2<x−yx+y<52<z−1z+1<52z+21<z−12<5z+51:2z+2<z−1z<−32:z−1<5z+5−6<4zz>−32Combine 1 and 2:−32<z<−3The only integer solution is z=−2∴xy=−2
Domain = all real numbers
Range = all real numbers
Thanks
I got 18, but I am not so sure either. Will wait for someone else to answer.
a−b≡n(mod99)62−75≡n(mod99)n≡−13(mod99)n≡86(mod99)n≡990+86(mod99)n≡1076(mod99)
So n is 1076
2+i4+i=(2+i)(4−i)(4+i)(4−i)=9+2i42+12=917+217i
Slope of (2x + 3y = 4k) = -2/3
Slope of (x - 2ky = 7) = -1/(-2k) = 1/2k
12k=−23−4k=3k=−34
Consider the slope:
5−3t−0=3−00−(−8)16=3tt=163
By intercept theorem,
ACDA=BCBE1515−10=8+BEBE15BE=40+5BE10BE=40BE=4
{a+ab2=40b−−−(1)a−ab2=−32b−−−(2)(1)+(2):2a=8bb=a4Substitute b=a4 into (1),a+a⋅(a216)=40(a4)a3−144a=0a(a+12)(a−12)=0a∈{0,12,−12}