\(\begin{cases} a + ab^2 = 40b \;\;\;\!\;\!--- (1)\\ a-ab^2 = -32b --- (2)\\ \end{cases}\\ (1) + (2) : 2a = 8b\\ b = \dfrac{a}{4}\\ \text{Substitute }b = \dfrac{a}4\text{ into (1),}\\ a + a \cdot \left(\dfrac{a^2}{16}\right) = 40\left(\dfrac{a}{4}\right)\\ a^3 -144a = 0\\ a(a+12)(a-12) = 0\\ a \in\{ 0, 12, -12\}\)
.