I haven't been active here for a long time, so I will post an answer :)
f(x)=xe−x+3xf′(x)=xddx(e−x)+e−xddx(x)+3ddxx=x(−e−x)+e−x+3=(1−x)e−x+3
Let ∠A=x,∠PBC=∠PBF=y,∠PCB=∠PCE=z{x+y+z=111∘x+2y+2z=180∘⟹y+z=69∘x+69∘=111∘x=42∘∠A=42∘
1)
f(x)=q(x)d(x)+r(x)If degd≤3,then deg r<deg d≤3⟹Contradiction!∴deg d≥4Minimum possible deg d=4⟹Maximum possible deg q=deg f−deg d=5
Your expansion is correct! But you don't have any term that is independent of x, so the constant term is 0.
1.
Parent function: f(x)=(45)x
Transformation: Vertical compression with a factor of 16/25.
2.
Parent function: f(x)=2x
Transformation: Reflect along x-axis, vertical stretch with a factor of 3/2, then translation upwards by 7 units.
=90∘∑x=0∘cos2x=cos20∘+cos21∘+⋯+cos290∘=1+(cos21∘+cos22∘+cos23∘+⋯+cos289∘)+0=1+(cos21∘+cos289∘)+(cos22∘+cos288∘)+⋯+(cos244∘+cos246∘)+cos245∘Note that cos2n∘+cos2(90−n)∘=1=1+1+1+1+⋯+1+12There are 44 1's=4412=892
=|(1+2i)8|=|1+2i|8=(√5)8=625
9∑k=1cos3xk=9∑k=1(4cos3xk−3cosxk)=49∑k=1cos3xk−39∑k=1cosxk=49∑k=1cos3xk≤4(9∑k=1cosxk)3=0∴Maximum value is 0.
We know that f(k) is a quadratic function in k.
Let f(k) = ak2 + bk + c.
=n∑k=1f(k)=an∑k=1k2+bn∑k=1k+cn∑k=11=an(n+1)(2n+1)6+bn(n+1)2+cn=n6(a(2n2+3n+1)+3b(n+1)+6c)=n(2an2+(3a+3b)n+a+3b+6c)6Compare with n3,n3=n(2an2+(3a+3b)n+a+3b+6c)66n3=2an3+3(a+b)n2+(a+3b+6c)nComparing coefficients, 2a=6⟹a=33(3+b)=0⟹b=−33+3(−3)+6c=0⟹c=1∴f(k)=3k2−3k+1
It will take 30 minutes to turn 1/3 of a round,
So it will take 6(30) = 180 minutes to turn 6(1/3) = 2 rounds.