You can use the definition of derivative on \(f'(x)\) to find \(f''(x)\) because \(f''(x) = \displaystyle\lim_{h\to0}\dfrac{f'(x + h) - f'(x)}{h}\).
If f is increasing on an interval \(\mathcal I\), then for all real numbers \(x\in \mathcal I\), \(f'(x) \geqslant 0\).
If f is decreasing on an interval \(\mathcal I\), then for all real numbers \(x\in \mathcal I\), \(f'(x) \leqslant 0\).
If f is concave downward on an interval \(\mathcal I\), then for all real numbers \(x\in \mathcal I\), \(f''(x) \leqslant 0\).
If f is concave upward on an interval \(\mathcal I\), then for all real numbers \(x\in \mathcal I\), \(f''(x) \geqslant 0\).
These are the definitions. I believe you can finish the rest with these.