a)
\(f'(x) \text{ is }\left\{\begin{matrix}\text{positive}\\\text{negative}\end{matrix}\right\}\text{ when }f(x)\text{ is }\left\{\begin{matrix}\text{strictly increasing}\\\text{strictly decreasing}\end{matrix}\right\}.\)
\(\implies f(x) \text{ is strictly increasing on the interval }(-\infty, 1)\cup (3, \infty)\text{ and strictly decreasing on the interval } (1, 3).\)
What about when x = 1 or x = 3?
Let ε be an arbitrary constant, infinitesmally small.
\(f'(1 -\varepsilon) > 0\text{ and }f'(1 + \varepsilon) < 0\)
At x = 1, local maximum of f(x) occurs.
\(f'(3 -\varepsilon) < 0\text{ and }f'(3 + \varepsilon) > 0\)
At x = 3, local minimum of f(x) occurs.
\(f'(x) \text{ is }\left\{\begin{matrix}\text{increasing}\\\text{decreasing}\\\text{constant}\end{matrix}\right\}\text{ when }f(x)\text{ }\left\{\begin{matrix}\text{is convex}\\\text{is concave}\\\text{has a point of inflexion}\end{matrix}\right\}.\)
\(\implies f(x) \text{ is concave on the interval } (-\infty, 2)\text{ and is convex on the interval }(2, \infty).\)
\(\text{Point of inflexion of }f(x)\text{ occurs at } x =2.\)
b)
\(f'(x) \text{ is }\left\{\begin{matrix}\text{increasing}\\\text{decreasing}\\\text{constant}\end{matrix}\right\}\text{ when }f''(x)\text{ is }\left\{\begin{matrix}\text{positive}\\\text{negative}\\\text{0}\end{matrix}\right\}.\)
\(\implies f''(x) \text{ is negative on the interval } (-\infty, 2)\text{ and is positive on the interval }(2, \infty).\)
\(f''(2) = 0\)
.