Loading [MathJax]/jax/output/SVG/jax.js
 

MaxWong

avatar
Nom d'utilisateurMaxWong
But9676
Membership
Stats
Questions 169
Réponses 3812

0
1555
3
avatar+9676 
MaxWong  13 janv. 2019
 #2
avatar+9676 
+4

An interesting theorem: If z+1z=2cosα, then zn+1zn=2cosnα for positive integers n and real α.

 

(If you don't like to read proofs, then you can jump to the point where I marked "END OF PROOF".)

 

Proof of the theorem:

We use strong induction.

 

Base case #1 : n = 1.

Substituting n = 1 and checking shows that base case #1 is true.

 

Base case #2 : n = 2.

z2+1z2=(z+1z)22=(2cosα)22=2(2cos2α1)=2cos2α

So base case #2 is true.

 

Inductive step: Assume zt+1zt=2costα and zt1+1zt1=2cos(t1)α for some positive integer t.

zt+1+1zt+1=(zt+1zt)(z+1z)(zt1+1zt1)=2costα2cosα2cos(t1)αBy product to sum formula:=2(cos(t+1)α+cos(t1)α)2cos(t1)α=2cos(t+1)α

Therefore by principles of mathematical induction, the proposition is true.

 

-------------------------------------------------------------------------(END OF PROOF)-------------------------------------------------------------------------

 

Back to the problem. Using the theorem I mentioned above, and substituting α=60 into the formula,

 

z10+1z10=2cos(1060)=2cos(600)=2cos240=1

.
27 juin 2020
 #2
avatar+9676 
+2

Group the terms in pairs. Using the formula a2 - b2 = (a - b)(a + b), we have

 

(a+(2n+1)d)2(a+(2n)d)2+(a+(2n1)d)2(a+(2n2)d)2++(a+d)2a2=((a+(2n+1)d)2(a+(2n)d)2)+((a+(2n1)d)2(a+(2n2)d)2)++((a+d)2a2)=((a+(2n+1)d)(a+(2n)d))((a+(2n+1)d)+(a+(2n)d))+((a+(2n1)d)(a+(2n2)d))((a+(2n1)d)+(a+(2n2)d))++((a+d)a)((a+d)+a)

 

The last line may be a bit long, but if we simplify it:

 

=d(2a+(4n+1)d)+d(2a+(4n3)d)++d(2a+1d)

 

Now we see that the original expression is nothing other than the sum of A.S. in disguise.

 

Factorising out a common factor for a more easy-to-spot A.S.:

 

=d((2a+(4n+1)d)+(2a+(4n3)d)++(2a+d))

 

We can now see the expression inside the bracket is an A.S. with first term = (2a + (4n + 1)d), common difference = -4d, number of terms = (n + 1).

 

We can plug those into the formula:

 

sum of A.S.=number of terms2(2×first term+(number of terms1)×common difference)=n+12(2(2a+(4n+1)d)+n(4d))=n+12(4a+(4n+2)d)=(n+1)(2a+(2n+1)d)

.
27 juin 2020