MaxWong

avatar
Nom d'utilisateurMaxWong
But9674
Membership
Stats
Questions 169
Réponses 3812

0
1543
3
avatar+9674 
MaxWong  13 janv. 2019
 #2
avatar+9674 
+4

An interesting theorem: If \(z + \dfrac1z = 2\cos \alpha\), then \(z^n + \dfrac1{z^n} = 2\cos n\alpha\) for positive integers n and real \(\alpha\).

 

(If you don't like to read proofs, then you can jump to the point where I marked "END OF PROOF".)

 

Proof of the theorem:

We use strong induction.

 

Base case #1 : n = 1.

Substituting n = 1 and checking shows that base case #1 is true.

 

Base case #2 : n = 2.

\(z^2 + \dfrac1{z^2} = \left(z + \dfrac1z\right)^2 - 2 = (2\cos \alpha)^2 - 2=2(2\cos^2 \alpha - 1) = 2\cos 2\alpha\)

So base case #2 is true.

 

Inductive step: Assume \(z^t + \dfrac1{z^t} = 2\cos t\alpha\) and \(z^{t - 1} + \dfrac1{z^{t - 1}} = 2\cos(t -1)\alpha\) for some positive integer \(t\).

\(\quad z^{t + 1} + \dfrac1{z^{t + 1}}\\ = \left(z^t + \dfrac1{z^t}\right)\left(z + \dfrac1z\right) - \left(z^{t - 1} + \dfrac1{z^{t - 1}}\right)\\ = 2\cos t\alpha \cdot 2\cos \alpha - 2\cos (t - 1)\alpha\\ \text{By product to sum formula:}\\ = 2 \left(\cos (t + 1)\alpha + \cos(t - 1)\alpha\right) - 2\cos(t-1)\alpha\\ =2\cos(t + 1)\alpha\)

Therefore by principles of mathematical induction, the proposition is true.

 

-------------------------------------------------------------------------(END OF PROOF)-------------------------------------------------------------------------

 

Back to the problem. Using the theorem I mentioned above, and substituting \(\alpha = 60^\circ\) into the formula,

 

\(\quad z^{10} + \dfrac1{z^{10}}\\ = 2\cos\left(10\cdot 60^\circ\right)\\ = 2 \cos\left(600^\circ\right)\\ = 2 \cos 240^\circ\\ = \boxed{-1}\)

.
27 juin 2020
 #2
avatar+9674 
+2

Group the terms in pairs. Using the formula a2 - b2 = (a - b)(a + b), we have

 

\(\quad(a +(2n+1)d)^2- (a + (2n)d)^2 +(a + (2n-1)d)^2 - (a+(2n-2)d)^2 + \cdots + (a+d)^2 - a^2\\ =\left((a +(2n+1)d)^2- (a + (2n)d)^2\right) +\left((a + (2n-1)d)^2 - (a+(2n-2)d)^2\right) + \cdots + \left((a+d)^2 - a^2\right)\\ =(\color{red}(a + (2n + 1)d)\color{black} - \color{blue}(a + (2n)d)\color{black})(\color{red}(a + (2n + 1)d)\color{black} + \color{blue}(a + (2n)d)\color{black}) \\\quad\quad+ (\color{red}(a + (2n-1)d)\color{black} - \color{blue}(a + (2n-2)d)\color{black})(\color{red}(a + (2n-1)d)\color{black} + \color{blue}(a + (2n-2)d)\color{black}) + \cdots \\\quad\quad\qquad+(\color{red}(a + d)\color{black} - \color{blue}a\color{black})(\color{red}(a + d)\color{black} + \color{blue}a\color{black})\)

 

The last line may be a bit long, but if we simplify it:

 

\(= d(2a + \color{red}(4n + 1)\color{black}d) + d(2a + \color{red}(4n - 3)\color{black}d) + \cdots + d(2a + \color{red}1\color{black}d)\)

 

Now we see that the original expression is nothing other than the sum of A.S. in disguise.

 

Factorising out a common factor for a more easy-to-spot A.S.:

 

\(= d((2a + (4n + 1)d) + (2a + (4n - 3)d) + \cdots + (2a + d))\)

 

We can now see the expression inside the bracket is an A.S. with first term = (2a + (4n + 1)d), common difference = -4d, number of terms = (n + 1).

 

We can plug those into the formula:

 

\(\quad\text{sum of A.S.} \\= \dfrac{\text{number of terms}}{2} \left(2\times \text{first term} + (\text{number of terms} - 1)\times \text{common difference}\right) \\= \dfrac{n + 1}{2}\left(2(2a + (4n + 1)d) + n(-4d)\right) \\= \dfrac{n + 1}2\left(4a + (4n + 2)d\right) \\= (n + 1)(2a+(2n + 1)d)\)

.
27 juin 2020