Since 13 is a prime, every integer has its inverse mod 13.
We can rewrite this system as
\(\begin{cases} 2a^{-1} + b^{-1} + c^{-1} \equiv 6 \pmod{13}\\ a^{-1} + 2b^{-1} + c^{-1} \equiv 8\pmod{13}\\ a^{-1} + b^{-1} + 2c^{-1} \equiv0 \pmod{13}\\ \end{cases}\)
Simplifying gives
\(\begin{cases} a^{-1} + 2b^{-1} + c^{-1} \equiv 8 \pmod{13}\\ -b^{-1} + c^{-1} \equiv 5\pmod{13}\\ -4b^{-1} \equiv8 \pmod{13}\\ \end{cases}\)
Then \(b^{-1} \equiv 11\pmod{13}\), \(c^{-1} \equiv 3 \pmod{13}\), and \(a^{-1} \equiv 9\pmod{13}\).
Inverting each of them gives \(a \equiv 3\pmod{13}\), \(b\equiv 6\pmod{13}\), and \(c\equiv9\pmod{13}\).
Then \(a + b + c \equiv 5\pmod{13}\). The remainder is 5.