Loading [MathJax]/jax/output/SVG/jax.js
 

MaxWong

avatar
Nom d'utilisateurMaxWong
But9675
Membership
Stats
Questions 169
Réponses 3812

0
1549
3
avatar+9675 
MaxWong  13 janv. 2019
 #4
avatar+9675 
+1

If you can determine the last two digits of 21993+31993, it suffices to determine the last digit of 21993+319935.

21993+31993 is divisible by 5 because 21993+3199321993+(2)199321993219930(mod5).

 

Note that 2199321993mod40233(mod100)  by Euler's theorem.

Also 2330(mod4) and 233233mod20213819217(mod25) again by Euler's theorem. 

By Chinese remainder theorem, 2199323392(mod100).

 

Similarly with 31993, we have 3199323(mod100)

 

Therefore, 21993+3199392+2311515(mod100).

 

Then 21993+31993=100k+15 for some integer k.

 

Then 21993+319935=20k+3 for some integer k. Therefore, the last digit is 3.

4 mai 2022