If you can determine the last two digits of 21993+31993, it suffices to determine the last digit of 21993+319935.
21993+31993 is divisible by 5 because 21993+31993≡21993+(−2)1993≡21993−21993≡0(mod5).
Note that 21993≡21993mod40≡233(mod100) by Euler's theorem.
Also 233≡0(mod4) and 233≡233mod20≡213≡8192≡17(mod25) again by Euler's theorem.
By Chinese remainder theorem, 21993≡233≡92(mod100).
Similarly with 31993, we have 31993≡23(mod100)
Therefore, 21993+31993≡92+23≡115≡15(mod100).
Then 21993+31993=100k+15 for some integer k.
Then 21993+319935=20k+3 for some integer k. Therefore, the last digit is 3.