\(a + b = 9\), so \(b = 9 - a\).
Now, \(ab(a - b) = a(9 - a)(a - (9- a)) = a(9 - a)(2a - 9) = -2a^3 + 27a^2 - 81a\).
When ab(a - b) is the largest, d(ab(a - b))/da = 0.
\(\dfrac{d}{da} (-2a^3 + 27a^2 - 81a) = 0\\ -6a^2 + 54a - 81 = 0\\ 2a^2 - 18a + 27 = 0\\ a = \dfrac{9 \pm 3 \sqrt 3}2\)
For brevity, let \(f(a) = -2a^3 + 27a^2 - 81a\).
\(f''\left(\dfrac{9 + 3\sqrt 3}2\right) = -12\left(\dfrac{9 + 3\sqrt 3}2\right) + 54 = -18\sqrt3 < 0\)
\(f''\left(\dfrac{9 - 3\sqrt 3}2\right) = -12\left(\dfrac{9 - 3\sqrt 3}2\right) + 54 = 18\sqrt3 > 0\)
So, the maximum value of ab(a - b) is attained at \(a = \dfrac{9 + 3\sqrt3}2\).
Since b = 9 - a, \(b = \dfrac{9 - 3\sqrt3}2\) when ab(a - b) is the largest.
Therefore, \(a = \dfrac{9 + 3\sqrt3}2\), and \(b = \dfrac{9 - 3\sqrt3}2\)
.