Processing math: 100%
 

Melody

avatar
Nom d'utilisateurMelody
But118703
Membership
Stats
Questions 900
Réponses 33647

-5
842
3
avatar+118703 
Melody  11 févr. 2022
 #6
avatar+118703 
0
4 mars 2023
 #6
avatar+118703 
+1

I do suggest you watch the video that I put up on another or your posts today.

 

the plus/minus 360 is easy

 

sin of any angle is equal to the sin of that angle plus or minus any multiple of 360degrees

 

so

sin23 = sin(23+360) = sin (23 - 720)   = sin (23 +/- 360n)     Where n is an integer

same goes for any other trig function.

 

 

with tan we can go one step further

tan is positive in the 1st and third quadrants.

so

 

   tanθ=tan(180+θ)=tan(360+θ)where theta is an acute anglealsotan(180θ)=tan(360θ)thismeansthatWe know that tan60o=32soweknowatan32=60but it also equals60+180,60720,etc,60+180natan32=60±180nWe only need the plus becasue n is any integer, it can be negative.atan32=60+180ndegrees

 

 

I hope I haven't made any stupid mistakes   frown

 

 

LaTex:

tan\theta=tan(180+\theta) =tan (360+\theta)  \qquad \text{where theta is an acute angle}\\
also\\  tan(180-\theta)=tan(360-\theta)  \\

\\this \;means\;that\;\\
\text{We know that }tan60^o=\frac{\sqrt3}{2}\\
so\;we \;know\\
atan\frac{\sqrt3}{2}=60\\
\text{but it also equals} \;\;60+180, 60-720,etc, \quad 60+180n\\

atan\frac{\sqrt3}{2}=60\pm180n\\
\text{We only need the plus becasue n is any integer, it can be negative.}\\
atan\frac{\sqrt3}{2}=60+180n\;\;\;degrees\\

4 mars 2023