Let the 3 consecutive co-efficients be
\(\binom{n}{r-1},\qquad \binom{n}{r},\qquad \binom{n}{r+1}\\ \text{And these are in the ratio }\qquad 1:7:35\\~\\ so\\ \binom{n}{r-1}=\frac{1}{7}\cdot \binom{n}{r}\qquad \color{red}{(1)} \color{black}{\quad and } \qquad \binom{n}{r+1}=5\cdot \binom{n}{r}\quad \color{red}{(2)}\\~\\ \)
\(\binom{n}{r-1}=\frac{1}{7}\cdot \binom{n}{r}\qquad \color{red}{(1)} \\~\\ LHS=\frac{n!}{(r-1)!(n-r+1)!}\\~\\ LHS=\frac{n!}{\frac{r!}{(r)}(n-r)!(n-r+1)}\\~\\ LHS=\frac{n!\qquad (r)}{r!(n-r)!\quad (n-r+1)}\\~\\ LHS=\binom{n}{r}\frac{ (r)}{ (n-r+1)}\\~\\ so\\ \frac{1}{7}=\frac{r}{n-r+1}\\ n-r+1=7r\\ n=8r-1 \)
Now simplify equation 2 and then solve simulataneously to find n and r. Then check your answer
--------------------------------------------------------
LaTex:
\binom{n}{r-1},\qquad \binom{n}{r},\qquad \binom{n}{r+1}\\
\text{And these are in the ratio }\qquad 1:7:35\\~\\
so\\
\binom{n}{r-1}=\frac{1}{7}\cdot \binom{n}{r}\qquad \color{red}{(1)} \color{black}{\quad and } \qquad
\binom{n}{r+1}=5\cdot \binom{n}{r}\quad \color{red}{(2)}\\~\\
\binom{n}{r-1}=\frac{1}{7}\cdot \binom{n}{r}\qquad \color{red}{(1)} \\~\\
LHS=\frac{n!}{(r-1)!(n-r+1)!}\\~\\
LHS=\frac{n!}{\frac{r!}{(r)}(n-r)!(n-r+1)}\\~\\
LHS=\frac{n!\qquad (r)}{r!(n-r)!\quad (n-r+1)}\\~\\
LHS=\binom{n}{r}\frac{ (r)}{ (n-r+1)}\\~\\
so\\
\frac{1}{7}=\frac{r}{n-r+1}\\
n-r+1=7r\\
n=8r-1