From the center M of the circles, draw rays to the corner E and to the center S of the side belonging to the corner. The result is a right-angled triangle M, E, S with sides s/2, r and R.
Then:
R2=(s2)2+r2r=√R2−(s2)2s2=R⋅sin(60∘)
r=√R2−R2⋅sin260∘r=R⋅√1−sin260∘r=R⋅cos 60∘r=12R
or very simply:
In the right triangle SME, angle SME=60°.
So is:
r=R⋅cos 60∘r=12R
!