Hi aw007!
Point A is the origin. ¯AB=1
Point C:fAC(x)=tan20°⋅xfBC(x)=tan43°⋅(x−1)tan20°⋅x=tan43°⋅(x−1)(tan43°−tan20°)⋅x−tan43°=0xC=tan43°tan43°−tan20°=1.64018yC=tan43°⋅tan20°tan43°−tan20°=0.59698
Point D:mAD=tan 20°3fAD(x)=tan 20∘3⋅xyD=tan 20∘3⋅xDfCD(x)=m(x−xC)+yCmCD=tan (180°−(180−20−23)°−23°3)=tan 35.¯3°yD=mCD(xD−xC)+yC=tan 35.¯3(xD−1.64018)+0.59698
tan 20∘3⋅xD=tan 35.¯3°⋅xD−tan 35.¯3°⋅1.64018+0.59698xD=tan 35.¯3°⋅1.64018−0.59698tan 35.3¯3°−tan 20°3xD=0.95564yD=tan 20∘3⋅xDyD=0.11170
Point E:fAE(x)=tan 2⋅20∘3⋅xyE=tan 40∘3⋅xEfCE(x)=m(x−xC)+yCmCE=tan (180°−(180−20−23)°−2⋅23°3)=tan 27.6¯6°yE=mCE(xE−xC)+yC=tan 27.6¯6(xE−1.64018)+0.59698
tan 40∘3⋅xE=tan 27.6¯6(xE−1.64018)+0.59698tan 40∘3⋅xE=tan 27.6¯6⋅xE−tan 27.6¯6⋅1.64018+0.59698.xE=tan 27.6¯6⋅1.64018−0.59698tan 27.6¯6−tan 13.3¯3°xE=0.91524
yE=tan 40∘3⋅xE=tan 40∘3⋅0.91524yE=0.21692
mDE=yE−yDxE−xD=0.21692−0.111700.91524−0.95564mDE=−2.60446
∠ADF=∠DAB+atan mDE=20°3−atan (−2.60446)∠ADF=7523∘The degree measure of angle AFD is 7523∘.
!