e6x + 5e3x − 14 = 0 ?
e6x=e3xe3x| set z=e3xz2+5z−14=01⏟a=1z2+5⏟b=5z−14⏟c=−14=0z1,2=−b±√b2−4ac2az1,2=−5±√25−4∗1∗(−14)2∗1z1,2=−5±√25+562z1,2=−5±92z1=2z2=−7e3x=z|lnln(e3x)=ln(z)3xln(e)=ln(z)|ln(e)=1!x=13ln(z)
\\x=x_1={ \ln{(2)}\over 3} } =0.23104906019\\ x=x_2={ \ln{(-7)}\over 3} } = \mbox{no solution !}\\\\ \boxed{x=0.23104906019}
.