e6x + 5e3x − 14 = 0 ?
$$\\e^{6x}=e^{3x}e^{3x} \quad | \quad \mbox{ set }\quad \boxed{z=e^{3x}}\\
z^2 +5z -14=0\\
\underbrace{1}_{a=1}z^2 \underbrace{+5}_{b=5}z \underbrace{-14}_{c=-14} =0\\
\boxed{z_{1,2}=
{
-b\pm\sqrt{b^2-4ac}
\over
2a
}
}\\\\
z_{1,2}=
{ -5\pm\sqrt{25-4*1*(-14)}
\over
2*1 } \\\\
z_{1,2}=
{ -5\pm\sqrt{25+56}
\over
2} \\\\
z_{1,2}=
{ -5\pm9\over
2} \\\\
\boxed{z_1= 2 \quad z_2 = -7} \\\\
e^{3x}=z \quad | \quad \ln\\\\
\ln{(e^{3x})}=\ln{(z)}\\\\
3x\ln{(e)}=\ln{(z)} \quad | \quad \ln{(e)}= 1 \quad !\\\\
\boxed{x={1\over 3}\ln{(z)}} \\\\$$
$$\\x=x_1={
\ln{(2)}\over 3}
}
=0.23104906019\\ x=x_2={
\ln{(-7)}\over 3}
}
= \mbox{no solution !}\\\\
\boxed{x=0.23104906019}$$
.