if r and s are the roots of 2x^2 -5x -7 =0 what is the value of r/s + s/r ?
$$ax^2+bx+c=0 \\
\mbox{The roots are: } x_{1,2}= {-b\pm\sqrt{b^2-4ac}\over2a}\\
\mbox{or } x_{1,2}= {-b\pm\sqrt{D}\over2a} \quad \mbox{ set }\quad D=b^2-4ac\\
\mbox{So we have: } r=x_1={-b+\sqrt{D}\over 2a}\\
\mbox{and } s=x_2={-b-\sqrt{D}\over 2a}$$
$$\\ \boxed{{r\over s}+{s\over r} =} {-b+\sqrt{D}\over -b-\sqrt{D}}+{-b-\sqrt{D}\over -b+\sqrt{D}}\\ \\
={(-b+\sqrt{D})^2 +(-b-\sqrt{D})^2\over (-b-\sqrt{D})(-b+\sqrt{D})}\\\\
={2(-b)^2+2(\sqrt{D})^2 \over (-b)^2-(\sqrt{D})^2}\\\\
={2b^2+2D \over b^2-D} \quad | \quad D= b^2-4ac$$
$$\\={2b^2+2b^2-8ac \over b^2-b^2+4ac} \\\\
={4b^2-8ac \over 4ac} \\\\
={b^2 \over ac} - 2 \quad | \quad a=2 \quad b=-5 \quad c=-7$$
$$\\={ (-5)^2 \over 2*(-7) } -2 \\\\
={ 25 \over (-14) } -2 \\\\
={ -25-2*14 \over 14 } \\\\
={ -\frac{53} {14} } \\\\
={ -\frac{14*3+11} {14} } \\\\
={ -3-\frac{11} {14} } \\\\
\boxed{={ -3\frac{11} {14} }}$$
.