Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
 

heureka

avatar
Nom d'utilisateurheureka
But26399
Membership
Stats
Questions 17
Réponses 5678

 #3
avatar+26399 
+2

Triangle AHI is equilateral. We know BC, DE, and FG are all parallel to HI and AB = BD = DF = FH.
What is the ratio of the area of the trapezoid FGIH to the area of triangle AHI?
Express your answer as a common fraction.

 

 

Let FG=sLet HI=cArea of the triangle AHI=AAHI Area of the triangle AGF=AAGF Area of the trapezoid FGIH=AFGIH Let AK=h (height of the triangleAGFLet AL=H (height of the triangleAHILet AF=34c

 

1.

AAHI=AAGF+AFGIHcH2=sh2+(s+c2)(Hh)|×2cH=sh+(s+c)(Hh)cH=sh+sHsh+cHchch=sH(1)orsc=hH(2)

 

2.

ratio=AFGIHAAHI=(s+c2)(Hh)cH2=(s+c)(Hh)cH=sHsh+cHchcH|ch=sH(1)=cHshcH=1shcH|sc=hH(2)=1h2H2ratio=1(hH)23.h34c=Hch=34cHch=34HhH=34ratio=1(34)2=1916=16916=716

 

So  the ratio  of areas is 716

 

laugh

13 févr. 2018
 #2
avatar+26399 
+1

Solve and find the domain of the equation:

xlogx(x2)=9

 

1. Domain:

x2>0x>2

 {xR:x>2} (assuming a function from reals to reals) 

 

2. Solve:

xlogx(x2)=9logx(x2)=ln(x2)ln(x)=ln(x2)ln(x12)=ln(x2)12ln(x)=2ln(x2)ln(x)x2ln(x2)ln(x)=9Formula: ab=eln(ab)=ebln(a)x2ln(x2)ln(x)=e2ln(x2)ln(x)ln(x)=e2ln(x2)

 

e2ln(x2)=9eln((x2)2)=9|eln((x2)2)=(x2)2(x2)2=9| both sidesx2=±3x12=3x1=3+2x1=5x22=3x2=3+2x2=1|no solution, see domain x>2

 

laugh

13 févr. 2018
 #1
avatar+26399 
+2

I assume the question is:

A sequence of positive integers with a1=1 and a9+a10=646 is formed  so that the first three terms are in geometric progression,  the second, third, and fourth terms are in arithmetic progression,  and, in general, for all n1,  the terms a2n1,a2n,a2n+1 are in geometric progression,  and the terms a2n,a2n+1, and a2n+2 are in arithmetic progression.  Let an be the greatest term in this sequence that is less than 1000. Find an.

 

Let AP = arithmetic progression,

Let GP = geometric progression

 

AP Formula: t= term  i,j,k= indicesti(jk)+tj(ki)+tk(ij)=0i=2nti=a2nj=2n+1tj=a2n+1k=2n+2tk=a2n+2

ti(jk)+tj(ki)+tk(ij)=0a2n(2n+1(2n+2))+a2n+1(2n+22n)+a2n+2(2n(2n+1))=0a2n+2a2n+1a2n+2=0

 

GP Formula: t= term  i,j,k= indicestjki×tkij×tijk=1i=2n1ti=a2n1j=2ntj=a2nk=2n+1tk=a2n+1

 

tjki×tkij×tijk=1a2n(2n+1)2n1×a2n+1(2n1)2n×a2n1(2n)2n+1=1a12n1×2a22n×a12n+1=1

 

So we have:

(1)a2n+2=2a2n+1a2n(2)a2n+1=a22na2n1

 

a1=1a3=a22a1a1=1| Formula (2)a3=a22a4=2a3a2a3=a22| Formula (1)=2a22a2a4=a2(2a21)a5=a24a3| Formula (2)a5=a22(2a21)2a22a5=(2a21)2a6=2a5a4| Formula (1)=2(2a21)2a2(2a21)a6=(2a21)(3a22)a7=a26a5| Formula (2)a7=(2a21)2(3a22)2(2a21)2a7=(3a22)2a8=2a7a6| Formula (1)=2(3a22)2(2a21)(3a22)a8=(3a22)(4a23)a9=a28a7| Formula (2)a9=(3a22)2(4a23)2(3a22)2a9=(4a23)2a10=2a9a8| Formula (1)=2(4a23)2(3a22)(4a23)a10=(4a23)(5a24)

 

a9+a10=646a9+a10=646(4a23)2+(4a23)(5a24)=646(4a23)(4a23+5a24)=646(4a23)(9a27)=64636a2255a2625=0a2=55±552436(625)236=55±9302572=55±30572a2=55+30572a2=5ora2=5530572a2=3.47222222222no solution, because an is a sequenceof positive integers!

 

Let an be the greatest term in this sequence that is less than 1000. Find an

a1=1a2=5a3=52=25a4=59=45a5=92=81a6=913=117a7=132=169a8=1317=221a9=172=289a10=1721=357a11=212=441a12=2125=525a13=252=625a14=2529=725a15=292=841a16=2933=957an<1000a17=332=1089an>1000

 

 

an is 957

 

 

GP:nratioa2n1a2na2n+115152521.825458131.48111716941.3076923076916922128951.2352941176528935744161.1904761904844152562571.1662572584181.137931034488419571089

 

AP:ncommon differencea2na2n+1a2n+212052545236458111735211716922146822128935758435744152561005256257257116725841957

 

laugh

9 févr. 2018
 #1
avatar+26399 
+1

Find the sum of the terms from the (n + 1) th to the m th term inclusive of an arithmetical progression whose

first term is a and whose second term is b.

If m = 13, n =   3 and the sum is 12a, find the ratio b: a.

 

Answer (m-n){a+1/2(m+n-1)(b-a)} ; 77/75

 

Formula arithmetical progression: a1=aa2=a+d

 

second term is b: a2=a+da2=ba+d=bd=ba

 

The common difference is ba

 

The sum of the member is: sn=na+n(n1)2d

 

The sum of the terms from the (n + 1) th to the m th term is: smsn=ma+m(m1)2(ba)=sm[na+n(n1)2(ba)=sn]=a(mn)+(ba2)[m(m1)n(n1)]=a(mn)+(ba2)(m2mn2+n)=a(mn)+(ba2)(m2n2m+n)=a(mn)+(ba2)[m2n2(mn)]=a(mn)+(ba2)[(mn)(m+n)(mn)]=a(mn)+(ba2)(mn)(m+n1)smsn=(mn)[a+(ba2)(m+n1)]

 

If m=13,n=3 and the sum is 12a, find the ratio b:a smsn=(mn)[a+(ba2)(m+n1)]12a=(mn)[a+(ba2)(m+n1)]12amn=a+(ba2)(m+n1)12amn=a+(b2)(m+n1)(a2)(m+n1)a(12mn1+m+n12)=b(m+n12)m=13n=3a(12101+152)=b(152)ba=(215)(12101+152)=(215)(1210+7510)=277150=277275ba=7775

 

 

laugh

8 févr. 2018
 #2
avatar+26399 
+3

In triangle
ABC,¯AB=5,¯AC=6,
and
¯BC=7.
Circles are drawn with centers A,B, and C,
so that any two circles are externally tangent.
Find the sum of the areas of the circles.

 

 

Let ra= radius of circle A Let rb= radius of circle B Let rc= radius of circle C 

 

(1)ra+rb=5(2)rb+rc=7(3)rc+ra=6(1)+(2)+(3):2(ra+rb+rc)=5+6+72(ra+rb+rc)=18|:2ra+rb+rc=9

 

rc= ?

ra+rb=5+rc=95+rc=9rc=95rc=4

 

ra= ?

ra+rb+rc=7=9ra+7=9ra=97ra=2

 

rb= ?

ra+rb+rc=9|ra+rc=66+rb=9rb=96rb=3

 

 

The sum of the areas of the circles:

πr2a+πr2b+πr2c=π(r2a+r2b+r2c)=π(22+32+42)=π(4+9+16)=29π

 

 

laugh

8 févr. 2018
 #9
avatar+26399 
+2
7 févr. 2018
 #7
avatar+26399 
+2

When the minute hand of a clock points exactly at a full minute, the hour hand is exactly two minutes away.

Give all possible times in a 12-hour period that satisfy condition.

 

 angular velocity minute hand: ωm=3601 h  angular velocity hour hand: ωh=36012 h angle = angular velocity × time angle minute hand: αm=ωm×thth time in hours  angle hour hand: αh=ωh×thth time in hours  angle difference minute hand-hour hand: αmαh=Δα Δα=αmαhΔα=ωm×thωh×thΔα=(ωmωh)×thΔα=(3601 h36012 h)×thΔα=(3601112)×thΔα=330×th(mod360)

 

Δα=330×th(mod360)

 

Example:

th=6 hΔα=330×6(mod360)Δα=1980(mod360)Δα=19805360Δα=180

 

1.

The hour hand of a clock points exactly at a full minute:36060 min

 

1 minute on the clock conforms 6 degrees.

 

 

2.

 

3.

 

4. Solution diophantine equation 11n + 60m = 2:

 

 

 

5. Solution diophantine equation 11n + 60m = -2:

 

 

 

 

The solutions are: 4:24 and 7:36

 

laugh

7 févr. 2018