heureka

avatar
Nom d'utilisateurheureka
But26367
Membership
Stats
Questions 17
Réponses 5678

 #6
avatar+26367 
+2
26 févr. 2018
 #3
avatar+26367 
+1

11)

Two circles, centered at A and B are externally tangent to each other, and tangent to a line L. A third circle, centered at C is externally tangent to the first two circles, and the line L. If the radii of circle A and circle B are 9 and 16, respectively, then what is the radius of circle C?

Picture: https://latex.artofproblemsolving.com/4/d/a/4da24a4edb9693476d2766d290f52dd917498a6f.png

 

 

\(\text{Pythagorean theorem:} \)

\(\begin{array}{|lrcll|} \hline (1) & (r_a+r_b)^2 &=& (r_b-r_a)^2 + s_1^2 \\ & r_a^2+2r_ar_b+r_b^2 &=& r_b^2-2r_br_a+r_a^2+s_1^2 \\ & 4r_ar_b & = & s_1^2 \\ & \mathbf{s_1} &\mathbf{=}& \mathbf{2\sqrt{r_ar_b}} \\\\ (2) & (r_b+r_c)^2 &=& (r_b-r_c)^2 + s_3^2 \\ & r_b^2+2r_br_c+r_c^2 &=& r_b^2-2r_br_c+r_c^2 + s_3^2 \\ & 4r_br_c &= & s_3^2 \\ & \mathbf{s_3} &\mathbf{=} & \mathbf{2\sqrt{r_br_c}} \\\\ (3) & (r_a+r_c)^2 &=& (r_a-r_c)^2 + s_2^2 \\ & r_a^2+2r_ar_c+r_c^2 &=& r_a^2-2r_ar_c+r_c^2 +s_2^2 \\ & 4r_ar_c & = & s_2^2 \\ & \mathbf{s_2} &\mathbf{=} & \mathbf{2\sqrt{r_ar_c}} \\\\ & \mathbf{s_1} &\mathbf{=}& \mathbf{s_2 + s_3} \\ & 2\sqrt{r_ar_b} &=& 2\sqrt{r_ar_c} + 2\sqrt{r_br_c} \quad & | \quad : 2 \\ & \sqrt{r_ar_b} &=& \sqrt{r_ar_c} + \sqrt{r_br_c} \\ & \sqrt{r_ar_b} &=& \sqrt{r_c}(\sqrt{r_a} + \sqrt{r_b}) \\ & \sqrt{r_c} &=& \dfrac{\sqrt{r_ar_b}} {\sqrt{r_a} + \sqrt{r_b}} \quad & | \quad \Rightarrow \frac{1}{\sqrt{r_c}} = \frac{1}{\sqrt{r_a}} + \frac{1}{\sqrt{r_b}} \\ & r_c &=& \dfrac{ r_ar_b } {(\sqrt{r_a} + \sqrt{r_b})^2} \quad & | \quad r_a = 9 \quad r_b=16 \\ & r_c &=& \dfrac{ 9\cdot 16 } {(\sqrt{9} + \sqrt{16})^2} \\ & r_c &=& \dfrac{ 144 } {(3+4)^2} \\ & r_c &=& \dfrac{ 144 } {49} \\ \hline \end{array}\)


The radius of circle C is \(\mathbf{\tfrac{144}{49}} \)

 

laugh

26 févr. 2018
 #2
avatar+26367 
+1

2)

H is the orthocenter of acute triangle ABC and the extensions of AH, BH, and CH
intersect the circumcircle of traingle ABC at A prime, B prime and C prime.
We know angle AHB : angle BHC : angle CHA = 9 : 10 : 11.
Find angle AprimeBprimeCprime in degrees.
Picture: https://latex.artofproblemsolving.com/6/1/1/6119f02c59ea35f11dceab068d51811cace24c1d.png

 

\(\text{Let $\angle A'B'C' = \angle CAB = x$ } \\ \text{Let $\angle ACB= \alpha $ } \\ \text{Let $\angle BAC= \beta $ } \\ \text{Let $\angle CBA= \gamma $ } \\ \text{Let $\angle AHB = \gamma + \beta $} \\ \text{Let $\angle BHC = \alpha + \gamma $} \\ \text{Let $\angle CHA = \beta + \alpha $} \\ \text{Let $ \mathbf{x = 180^{\circ}-2 \times\gamma }$} \)

 

In triangle ABC we set the angles \( \alpha, \beta \text{ and } \gamma\)

 

further:

\(\mathbf{ \large{x =180^{\circ} - 2 \times \gamma} } \)

 

 

\(\begin{array}{|rcrcrcrcrcr|} \hline \angle AHB &:& \angle BHC &:& \angle CHA &=& 9 &:& 10 &:& 11 \\ \gamma + \beta &:& \alpha + \gamma &:& \beta + \alpha &=& 9 &:& 10 &:& 11 \\ \hline \end{array}\)

 

\(\begin{array}{rclrclrcl} \dfrac{\alpha + \gamma }{\beta + \alpha} &=& \dfrac{10}{11} \qquad & \qquad \dfrac{\gamma + \beta}{\beta + \alpha} &=& \dfrac{9}{11} \\\\ \dfrac{\alpha + \gamma +\gamma + \beta }{\beta + \alpha} &=& \dfrac{10+9}{11} \\\\ \dfrac{\alpha + \beta + 2\times\gamma }{\alpha + \beta } &=& \dfrac{19}{11} \quad &| \quad \alpha + \beta + \gamma = 180^{\circ} \\\\ & & \quad &| \quad \alpha + \beta = 180^{\circ} - \gamma \\\\ \dfrac{180^{\circ} - \gamma + 2\times\gamma }{180^{\circ} - \gamma } &=& \dfrac{19}{11} \\\\ \dfrac{180^{\circ} + \gamma }{180^{\circ} - \gamma } &=& \dfrac{19}{11} \\\\ 11\times(180^{\circ} + \gamma ) &=&19\times(180^{\circ} - \gamma ) \\ 11\times 180^{\circ} + 11\gamma &=&19\times 180^{\circ} - 19\gamma \\ 30\gamma &=&8\times 180^{\circ}\\ \mathbf{\gamma} &\mathbf{=}& \mathbf{48^{\circ}} \\ \end{array} \)

 

\(\begin{array}{|rcll|} \hline \angle A'B'C' = x &=& 180^{\circ} - 2 \times \gamma \\ \angle A'B'C' &=& 180^{\circ} - 2 \times \gamma \\ &=& 180^{\circ} - 2 \times 48^{\circ} \\ &=& 180^{\circ} - 96^{\circ} \\ &=& \mathbf{84^{\circ}} \\ \hline \end{array} \)

 

\(\text{The angle $A'B'C'$ in degrees is $\mathbf{84^{\circ}}$ } \)

 

\(\begin{array}{rcll} \dfrac{\alpha+\gamma}{\alpha+\beta} &=& \dfrac{10}{11} \quad & | \quad \alpha+ \beta=180^{\circ}- \gamma = 180^{\circ}-84^{\circ} = 132^{\circ} \\\\ \dfrac{\alpha+48^{\circ} }{132^{\circ}} &=& \dfrac{10}{11} \\\\ \alpha &=& \dfrac{10\times 132^{\circ}}{11} -48^{\circ} \\\\ \mathbf{ \alpha } & \mathbf{=} & \mathbf{72^{\circ}} \\ \end{array}\)

 

\(\begin{array}{rcll} \alpha+\beta &=& 132^{\circ} \\ \beta &=& 132^{\circ}-\alpha \\ \beta &=& 132^{\circ}-72^{\circ} \\ \mathbf{ \beta } & \mathbf{=} & \mathbf{60^{\circ}} \\ \end{array}\)

 

\(\begin{array}{|rcll|} \hline \angle AHB = \gamma + \beta = 108^{\circ} \\ \angle BHC = \alpha + \gamma = 120^{\circ} \\ \angle CHA = \beta + \alpha = 132^{\circ} \\ \hline \end{array} \)

 

 

laugh

22 févr. 2018