Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Nom d'utilisateurheureka
But26399
Membership
Stats
Questions 17
Réponses 5678

 #2
avatar+26399 
+2

The numbers 1,2,3,4,5,6,7,8,9 are arranged in a list so that each number
is either greater than all the numbers that come before it or
is less than all the numbers that come before it.
For example, 4,5,6,3,2,7,1,8,9 is one such list:

notice that (for instance) the 6 is greater than all the numbers that come before it,
and the 2 is less than all the numbers that come before it.
How many are such lists of the numbers 1,2,3,4,5,6,7,8,9 possible?

 

1.1234567892.2134567893.2314567894.2341567895.2345167896.2345617897.2345671898.2345678199.23456789110.32145678911.32415678912.32451678913.32456178914.32456718915.32456781916.32456789117.34215678918.34251678919.34256178920.34256718921.34256781922.34256789123.34521678924.34526178925.34526718926.34526781927.34526789128.34562178929.34562718930.34562781931.34562789132.34567218933.34567281934.34567289135.34567821936.34567829137.34567892138.43215678939.43251678940.43256178941.43256718942.43256781943.43256789144.43521678945.43526178946.43526718947.43526781948.43526789149.43562178950.43562718951.43562781952.43562789153.43567218954.43567281955.43567289156.43567821957.43567829158.43567892159.45321678960.45326178961.45326718962.45326781963.45326789164.45362178965.45362718966.45362781967.45362789168.45367218969.45367281970.45367289171.45367821972.45367829173.45367892174.45632178975.45632718976.45632781977.45632789178.45637218979.45637281980.45637289181.45637821982.45637829183.45637892184.45673218985.45673281986.45673289187.45673821988.45673829189.45673892190.45678321991.45678329192.45678392193.45678932194.54321678995.54326178996.54326718997.54326781998.54326789199.543621789100.543627189101.543627819102.543627891103.543672189104.543672819105.543672891106.543678219107.543678291108.543678921109.546321789110.546327189111.546327819112.546327891113.546372189114.546372819115.546372891116.546378219117.546378291118.546378921119.546732189120.546732819121.546732891122.546738219123.546738291124.546738921125.546783219126.546783291127.546783921128.546789321129.564321789130.564327189131.564327819132.564327891133.564372189134.564372819135.564372891136.564378219137.564378291138.564378921139.564732189140.564732819141.564732891142.564738219143.564738291144.564738921145.564783219146.564783291147.564783921148.564789321149.567432189150.567432819151.567432891152.567438219153.567438291154.567438921155.567483219156.567483291157.567483921158.567489321159.567843219160.567843291161.567843921162.567849321163.567894321164.654321789165.654327189166.654327819167.654327891168.654372189169.654372819170.654372891171.654378219172.654378291173.654378921174.654732189175.654732819176.654732891177.654738219178.654738291179.654738921180.654783219181.654783291182.654783921183.654789321184.657432189185.657432819186.657432891187.657438219188.657438291189.657438921190.657483219191.657483291192.657483921193.657489321194.657843219195.657843291196.657843921197.657849321198.657894321199.675432189200.675432819201.675432891202.675438219203.675438291204.675438921205.675483219206.675483291207.675483921208.675489321209.675843219210.675843291211.675843921212.675849321213.675894321214.678543219215.678543291216.678543921217.678549321218.678594321219.678954321220.765432189221.765432819222.765432891223.765438219224.765438291225.765438921226.765483219227.765483291228.765483921229.765489321230.765843219231.765843291232.765843921233.765849321234.765894321235.768543219236.768543291237.768543921238.768549321239.768594321240.768954321241.786543219242.786543291243.786543921244.786549321245.786594321246.786954321247.789654321248.876543219249.876543291250.876543921251.876549321252.876594321253.876954321254.879654321255.897654321256.987654321

 

The answer is 256

 

laugh

20 févr. 2018
 #7
avatar+26399 
+2

Computing...

 

1.

Numbers:3130292827263213121110251432924154182316567221718192021

 

2.

Coordinates of the lattice points:Start at (0,0)=1 (3,3)(2,3)(1,3)(0,3)(1,3)(2,3)(3,2)(2,2)(1,2)(0,2)(1,2)(2,2)(2,1)(1,1)(0,1)(1,1)(2,1)(2,0)(1,0)(0,0)(1,0)(2,0)(2,1)(1,1)(0,1)(1,1)(2,1)(2,2)(1,2)(0,2)(1,2)(2,2)

 

3.

Algorithem to get the lattice point coordinates:lattice point numbercoordinate (x,y)1.(0,0)2.(0,1)3.(1,1)4.(1,0)5.(1,1)6.(0,1)7.(1,1)8.(1,0)9.(1,1)10.(1,2)11.(0,2)12.(1,2)13.(2,2)14.(2,1)15.(2,0)16.(2,1)17.(2,2)18.(1,2)19.(0,2)20.(1,2)21.(2,2)22.(2,1)23.(2,0)24.(2,1)25.(2,2)26.(2,3)27.(1,3)28.(0,3)29.(1,3)30.(2,3)31.(3,3)32.(3,2)1843.(21,15)2017.(22,14)2018.(22,15)2019.(22,16)2201.(23,15)

 

4.

short algorithm to get (x,y) the index in a grid-net of the spiral in c++:

    int n_max = 2818;
    int y_coordinate = 0;
    int x_coordinate = 0;
    for(int i = 0; i < n_max; ++i) {
        // output Number i+1
        // output x_coordinate
        // output y_coordinate
        if(abs(y_coordinate) <= abs(x_coordinate) && (y_coordinate != x_coordinate || y_coordinate >= 0))
            y_coordinate += ((x_coordinate >= 0) ? 1 : -1);
        else
            x_coordinate += ((y_coordinate >= 0) ? -1 : 1);
    }

 

Find the lattice point coordinate of 2018.

We find (22,15).

 

The four numbers directly adjacent to the number “2018” in
this spiral are (21,15), (22,14), (22,16), (23,15).

The Numbers are 1843, 2017, 2019, 2201.

 

laugh

20 févr. 2018
 #4
avatar+26399 
+1

In the diagram below, we have DE = 2EC and AB = DC = 20. Find the length of FG.

 

 

Let DC=20 Let DE=2320 Let EC=1320 Let FG=x+EC or x=FGEC Let BG=p Let GC=q 

 

1. intercept theorem

qx=pDExDE=2320qx=p2320xpq=403x3x(1)

 

2. intercept theorem

qDEx=px+ECDE=2320EC=1320q2320x=px+1320pq=3x+20403x(2)

 

(1)=(2):pq=403x3x=3x+20403x403x3x=3x+20403x(403x)2=3x(3x+20)1600240x+9x2=9x2+60x1600240x=60x300x=1600|:300x=1600300x=163FG=x+ECEC=203=163+203=363FG=12

 

 

laugh

16 févr. 2018
 #1
avatar+26399 
+1

What is the smallest positive integer that will satisfy the following congruences:

N mod 105 = 104,

N mod 111 = 110,

N mod 121 = 111,

N mod 122 = 111

Thanks for any help.

 

n104(mod105)n110(mod111)n104=105xn110=111yn=104+105xn=110+111yn=104+105x=110+111y104+105x=110+111y105x111y=6|:335x37y=2x,yZx=1+37b1)bZn=104+105xn=104+105(1+37b)n=104105+10537bn=1+3885bn1(mod3885)(1)

n111(mod121)n111(mod122)n111=121xn111=122yn=111+121xn=111+122yn=111x+121y=111+122y111x+121y=111+122y121x122y=0x,yZx=122a2)aZn=111+121xn=111+121(122a)n=111+121122an=111+14762an111(mod14762)(2)

 

After reducing, we have two formulas:

n1(mod3885)(1)n111(mod14762)(2)

 

n1(mod3885)n111(mod14762)n+1=3885xn111=14762yn=1+3885xn=111+14762yn=1+3885x=111+14762y1+3885x=111+14762y3885x14762y=112x,yZx=3378+14762g3)gZn=1+3885xn=1+3885(3378+14762g)n=1+38853378+388514762gn=13123529+57350370ggZ

 

The smallest positive integer is  13 123 529

 

Proof:

13 123 529mod 105=10413 123 529mod 111=11013 123 529mod 121=11113 123 529mod 122=111

 

1)Solve of the diophantine equation 35x37y=2 The variable with the smallest coefficient is x. The equation is transformed after x35x=2+37yx=2+37y35=2+35y+2y35=35y+2+2y35=35y35+2+2y35x=y+2+2y35we set:a=2+2y3535a=2+2yThe variable with the smallest coefficient is y. The equation is transformed after y2y=2+35ay=2+35a2=2+34a+a2=34a2+a2=22+34a2+a2y=1+17a+a2we set:b=a22b=aThe variable with the smallest coefficient is a. The equation is transformed after ano fraction there:a=2b

 

Elemination of the unknowns:y=2+35a2|a=2b=2+35(2b)2y=1+35bx=2+37y35|y=1+35b=2+37(1+35b)11x=1+37b

 

2)Solve of the diophantine equation 121x122y=0 The variable with the smallest coefficient is x. The equation is transformed after x121x=122yx=122y121=121y+y121=121y121+y121x=y+y121we set:a=y121121a=yThe variable with the smallest coefficient is y. The equation is transformed after yno fraction there:y=121a

 

Elemination of the unknowns:x=122y121|y=121a=122(121a)121x=122a

 

3)Solve of the diophantine equation 3885x14762y=112 The variable with the smallest coefficient is x. The equation is transformed after x3885x=112+14762yx=112+14762y3885=112+11655y+3107y3885=11655y+112+3107y3885=11655y3885+112+3107y3885x=3y+112+3107y3885we set:a=112+3107y38853885a=112+3107yThe variable with the smallest coefficient is y. The equation is transformed after y3107y=112+3885ay=112+3885a3107=112+3107a+778a3107=3107a112+778a3107=3107a3107+112+778a3107y=3a+112+3107a3107we set:b=112+778a31073107b=112+778aThe variable with the smallest coefficient is a. The equation is transformed after a778a=112+3107ba=112+3107b778=112+2334b+773b778=2334b+112+773b778=2334b3107+112+773b778a=3b+112+773b778we set:c=112+773b778778c=112+773bThe variable with the smallest coefficient is b. The equation is transformed after b773b=112+778cb=112+778c773=112+773c+5c773=773c112+5c773=773c773+112+5c773b=c+112+5c773we set:d=112+5c773773d=112+5cThe variable with the smallest coefficient is c. The equation is transformed after c5c=112+773dc=112+773d5=110+2+770d+3d5=110+770d+2+5d5=1105+770d5+2+3d5c=22+154d+2+3d5we set:e=2+3d55e=2+3dThe variable with the smallest coefficient is d. The equation is transformed after d3d=2+5ed=2+5e3=2+3e+2e3=3e2+2e3=3e3+2+2e3d=e+2+2e3we set:f=2+2e33f=2+2eThe variable with the smallest coefficient is e. The equation is transformed after e2e=2+3fe=2+3f2=2+2f+f2=22+2f2+f2e=1+f+f2we set:g=f22g=fThe variable with the smallest coefficient is f. The equation is transformed after fno fraction there:f=2g

 

Elemination of the unknowns:e=2+3f2|f=2g=2+32g2e=1+3gd=2+5e3|e=1+3g=2+5(1+3g)2d=1+5gc=112+773d5|d=1+5g=112+773(1+5g)2c=177+773gb=112+778c773|c=177+773g=112+778(177+773g)773b=178+778ga=112+3107b778|b=178+778g=112+3107(178+778g)778a=711+3107gy=112+3885a3107|a=711+3107g=112+3885(711+3107g)3107y=889+3885gx=112+14762y3885|y=889+3885g=112+14762(889+3885g)3885x=3378+14762g

 

 

laugh

15 févr. 2018