Given: sina=−2129,3π2<a<2πtanb=−247,π2<b<π
Note that: cos(a+b)=cosacosb−sinasinb
So that we have to find cos a, cos b, sin b because the value of sin a is given.
A few formulae: cos(arcsinx)=√1−x2cos(arctanx)=1√1+x2sin(arctanx)=x√1+x2
To find cos a:
cosa=cos(arcsin(sina))=√1−sin2a=√1−(−2129)2=√292−212292=√202292=2029
To find cos b:
cosb=cos(arctan(tanb))=1√1+tan2b=1√1+57649=1√62549=1257=725
To find sin b:
sinb=sin(arctan(tanb))=tanb√1+tan2b=−247√1+57649=−247√62549=−247257=−2425
cos a = 20/29, cos b = 7/25, sin b = -24/25, sin a = -21/29
To find cos(a + b):
cos(a+b)=cosacosb−sinasinb=(2029)(725)−(−2129)(−2425)=(140725)−(504725)=−364725
.