Well. I got quick ways for all of them.
Formula: ∫10xp(1−xr)sdx=sp+rs+1B(p+1r,s)
Where B(x,y)=Γ(x)⋅Γ(y)Γ(x+y)
1)
∫10√1−√xdx=∫10x0(1−x1/2)1/2dx=1/20+1/2⋅1/2+1B(0+11/2,1/2)=25B(2,1/2)=25Γ(2)⋅Γ(1/2)Γ(2+1/2)=815
2)
∫10√3√x−√xdx=∫10√3√x(1−6√x)dx=∫10x1/6(1−x1/6)1/2dx=1/21/6+1+1/6⋅1/2B(1/6+11/6,1/2)dx=25B(7,1/2)=409615015
3)
∫10(x2/5−3√x)4/7dx=∫10(x2/5)4/7(1−x−1/15)4/7dx=∫10x8/35(1−x−1/15)4/7dx=47835+1+−115⋅47B(835+1−115,47)=1225B(−1297,47)≈−0.0626
4)
∫π/20cos15xdx=∫π/20cosx(1−sin2x)7dxu=sinx=∫10(1−u2)7du=70+1+2×7B(0+12,7)=715B(1/2,7)=20486435
5)
∫π/20sin13xdx=∫π/20(−sinx)(1−cos2x)6dxu=cosx=∫10(1−u2)6du=60+1+2×6B(0+12,6)=613B(12,6)=10243003
.