First, we find \(f^{-1}(x)\) in terms of a and b.
\(f(x) = ax + b\\ x = af^{-1}(x) + b\\ f^{-1}(x) = \dfrac{x - b}a\)
Now,
\(g(x) = f^{-1}(x) - 3\\ 5x - 4 = \dfrac xa - \left(\dfrac ba + 3\right)\)
Comparing coefficients:
\(\dfrac1a = 5\\ a = \dfrac15\)
\(5b + 3 = 4\\ b = \dfrac15\)
Therefore
\(5a + 5b = 5\cdot \dfrac15 + 5\cdot \dfrac15 = 2\)
.