Loading [MathJax]/jax/output/SVG/jax.js
 

MaxWong

avatar
Nom d'utilisateurMaxWong
But9675
Membership
Stats
Questions 169
Réponses 3812

0
1549
3
avatar+9675 
MaxWong  13 janv. 2019
 #3
avatar+9675 
+2

Appendix: Why is 4sinxsin(60x)sin(60+x)=sin3x?

 

Proof:

 

Using compound angle formula,

 

4sinxsin(60x)sin(60+x)=4sinx(sin60cosxcos60sinx)(sin60cosx+cos60sinx)

 

Simplifying,

 

4sinxsin(60x)sin(60+x)=4sinx(32cosx12sinx)(32cosx+12sinx)

4sinxsin(60x)sin(60+x)=sinx(3cosxsinx)(3cosx+sinx)

 

Now, by the identity a2b2=(ab)(a+b),

4sinxsin(60x)sin(60+x)=sinx(3cos2xsin2x)

 

Starting from the right hand side, expanding using triple angle formula,

(if you haven't learnt that yet, you can try expanding it with compound angle formula and double angle formula.)

sin3x=3sinx4sin3x

 

Now, it suffices to show that sinx(3cos2xsin2x)=3sinx4sin3x

 

To do so, we use the identity cos2x=1sin2x.

 

sinx(3cos2xsin2x)=sinx(3(1sin2x)sin2x)=sinx(33sin2xsin2x)=sinx(34sin2x)=3sinx4sin3x

 

Therefore, the original identity 4sinxsin(60x)sin(60+x)=sin3x is true.

11 juil. 2020