Appendix: Why is 4sinxsin(60∘−x)sin(60∘+x)=sin3x?
Proof:
Using compound angle formula,
4sinxsin(60∘−x)sin(60∘+x)=4sinx(sin60∘cosx−cos60∘sinx)(sin60∘cosx+cos60∘sinx)
Simplifying,
4sinxsin(60∘−x)sin(60∘+x)=4sinx(√32cosx−12sinx)(√32cosx+12sinx)
4sinxsin(60∘−x)sin(60∘+x)=sinx(√3cosx−sinx)(√3cosx+sinx)
Now, by the identity a2−b2=(a−b)(a+b),
4sinxsin(60∘−x)sin(60∘+x)=sinx(3cos2x−sin2x)
Starting from the right hand side, expanding using triple angle formula,
(if you haven't learnt that yet, you can try expanding it with compound angle formula and double angle formula.)
sin3x=3sinx−4sin3x
Now, it suffices to show that sinx(3cos2x−sin2x)=3sinx−4sin3x
To do so, we use the identity cos2x=1−sin2x.
sinx(3cos2x−sin2x)=sinx(3(1−sin2x)−sin2x)=sinx(3−3sin2x−sin2x)=sinx(3−4sin2x)=3sinx−4sin3x
Therefore, the original identity 4sinxsin(60∘−x)sin(60∘+x)=sin3x is true.