Note that
f(x)=(x2+6x+9)50−4x+3=((x+3)2)50−4x+3=(x+3)100−4x+3
For each of i=1,2,⋯,100, since x=ri is a root of f(x):
f(ri)=0(ri+3)100=4ri−3
Now, using the equation above,
(r1+3)100+(r2+3)100+⋯+(r100+3)100=(4r1−3)+(4r2−3)+⋯+(4r100−3)=4(r1+r2+⋯+r100)−300
By Vieta's formula, we have:
r1+r2+⋯+r100=−coefficient of x99 in f(x)coefficient of x100 in f(x)
Using the binomial theorem, we can expand (x+3)100.
(x+3)100−4x+3=x100+300x99+⋯
Therefore,
r1+r2+⋯+r100=−3001=−300
Recall that (r1+3)100+(r2+3)100+⋯+(r100+3)100=4(r1+r2+⋯+r100)−300. Then:
(r1+3)100+(r2+3)100+⋯+(r100+3)100=4(−300)−300=−1500
.