$$\mbox{Find an equation of the line that satisfies the given conditions.}\\
\mbox{Through (1/2, -2/7) perpendicular to the line 5x-10y=1}$$
$$\\5x-10y=1 \quad \Rightarrow \quad g(x) = 0.5x-0.1\\
f(x)=ax^2+bx+c\\
\boxed{\mbox{1. }f(x)=g(x)}\quad and \quad \boxed{\mbox{2. }f'(x)*g'(x)=-1}$$
$$f(x)=ax^2+bx+c\\
2=a*1^2+b*1+c\\
7=a*(-2)^2+b(-2)+c\\
(2)\quad 2=a+b+c\\
(1)\quad 7=4a-2b+c\\
(1)-(2)\quad 5=3a-3b \quad \Rightarrow \boxed{b=a-\frac{5}{3}\mbox{ and }c=\frac{11}{3}-2a}$$
$$f(x)=g(x)\\
ax^2+bx+c=0.5x-0.1\\
ax^2+(a-\frac{5}{3})x+\frac{11}{3}-2a=0.5x-0.1 \\
\Rightarrow \boxed{x_{1,2}=\frac{13-6a}{12a}\pm\sqrt{\frac{(6a-13)^2}{(12a)^2}-\frac{(113-60a)}{30a}}}$$
$$f'(x)*g'(x)=-1\\
f'(x)=2ax+b\\
g'(x)=0.5\\
(2ax+b)*0.5=-1 \quad b=a-\frac{5}{3}\\
\Rightarrow 2ax+b=-2\\
\Rightarrow 2ax+(a-\frac{5}{3})=-2\\
\boxed{2ax+a=-\frac{1}{3}}$$
$$2a\left[ \frac{13-6a}{12a}\pm\sqrt{\frac{(6a-13)^2}{(12a)^2}-\frac{113-60a}{30a}
}\right]+a=-\frac{1}{3}\\
\Rightarrow 324a^2-542.4a-56=0\\
\Rightarrow \boxed{a_{1,2}=\frac{22.6\pm\sqrt{636.76}}{27}
}$$
$$\mbox{a must be negative: }
\boxed{a=\frac{22.6-\sqrt{636.76}}{27}}$$
$${\mathtt{a}} = {\frac{\left({\mathtt{22.6}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{636.76}}}}\right)}{{\mathtt{27}}}} \Rightarrow {\mathtt{a}} = -{\mathtt{0.097\: \!559\: \!403\: \!970\: \!835\: \!4}}$$
$${\mathtt{b}} = {\frac{\left({\mathtt{22.6}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{636.76}}}}\right)}{{\mathtt{27}}}}{\mathtt{\,-\,}}{\frac{{\mathtt{5}}}{{\mathtt{3}}}} \Rightarrow {\mathtt{b}} = -{\mathtt{1.764\: \!226\: \!070\: \!637\: \!502\: \!1}}$$
$${\mathtt{c}} = {\frac{{\mathtt{11}}}{{\mathtt{3}}}}{\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\times\,}}\left({\frac{\left({\mathtt{22.6}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{636.76}}}}\right)}{{\mathtt{27}}}}\right) \Rightarrow {\mathtt{c}} = {\mathtt{3.861\: \!785\: \!474\: \!608\: \!337\: \!5}}$$
The eqaution is:
$$\\f(x)=ax^2+bx+c\\
\boxed{f(x)=-0.0975594039708354x^2-1.7642260706375021x+3.8617854746083375
}$$
.