Math(Input=Result) Error!
$${binom}{\left({\left({\frac{{\mathtt{3}}}{{{\mathtt{x}}}^{{\mathtt{2}}}}}{\mathtt{\,-\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{3}}}\right)}^{{\mathtt{10}}}\right)} = {binom}{\left(\tiny\text{Error: loop}\right)}$$
$$\left(\dfrac{3}{x^2}-4x^3\right)^{10}\\$$
I think the answer is:
$$10Cr\times \left(\dfrac{3}{x^2}\right)^{\textcolor[rgb]{1,0,0}{10-r}}\times (-4x^3)^{\textcolor[rgb]{1,0,0}{r}}\\
=10Cr\times 3^{10-r} \times (-4)^r \times x^{-2(10-r)} \times x^{3r}\\
=10Cr\times 3^{10-r} \times (-4)^r \times x^{-2(10-r)+3r}\\
=10Cr\times 3^{10-r} \times (-4)^r \times x^{-20+2r+3r}\\
=10Cr\times 3^{10-r} \times (-4)^r \times x^{-20+5r}$$
so -20+5r=0 -> r = 4
the term we want is
$$10C\textcolor[rgb]{1,0,0}{4}\times 3^6\times (-4)^4 \times x^0$$
Using sigma notation and factorials for the combinatorial numbers, here is the binomial theorem:
(1) -8x - 12y = 36 -> 8x + 12y = -36
(2) 5y - 6x = 41 -> -6x + 5y = 41
$$\boxed{\begin{array}{rcrcr}
8x & + & 12y &=& -36 \\
-6x & + & 5y &=& 41
\end{array}}$$
\boxed{\begin{array}{rcrcr}
8x & + & 12y &=& -36 \\
-6x & + & 5y &=& 41
\end{array}}
$$\\x=
\frac{\begin{vmatrix}
-36 & 12 \\
41 & 5
\end{vmatrix}}{\begin{vmatrix}
8& 12 \\
-6 & 5
\end{vmatrix}}
=\frac{-36*5-41*12}{8*5-(-6)*12}
=\frac{-180-492}{40+72}
=\frac{-672}{112}=-6\\
\boxed{x=-6}
\\y=
\frac{\begin{vmatrix}
8 & -36 \\
-6 & 41
\end{vmatrix}}{\begin{vmatrix}
8& 12 \\
-6 & 5
\end{vmatrix}}
=\frac{8*41-(-6)(-36)}{8*5-(-6)*12}
=\frac{328-216}{40+72}
=\frac{112}{112}=1\\
\boxed{y=1}$$
\\x=
\frac{\begin{vmatrix}
-36 & 12 \\
41 & 5
\end{vmatrix}}{\begin{vmatrix}
8& 12 \\
-6 & 5
\end{vmatrix}}
=\frac{-36*5-41*12}{8*5-(-6)*12}
=\frac{-180-492}{40+72}
=\frac{-672}{112}=-6\\
\boxed{x=-6}
\\y=
\frac{\begin{vmatrix}
8 & -36 \\
-6 & 41
\end{vmatrix}}{\begin{vmatrix}
8& 12 \\
-6 & 5
\end{vmatrix}}
=\frac{8*41-(-6)(-36)}{8*5-(-6)*12}
=\frac{328-216}{40+72}
=\frac{112}{112}=1\\
\boxed{y=1}