$${\frac{{\mathtt{\pi}}{\mathtt{\,\times\,}}{\mathtt{15}}{\mathtt{\,\times\,}}{\mathtt{15}}{\mathtt{\,\times\,}}{\mathtt{2}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\frac{{\mathtt{20}}}{{\mathtt{15}}}}\right)}}{{\mathtt{360}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{\pi}}{\mathtt{\,\times\,}}{\mathtt{20}}{\mathtt{\,\times\,}}{\mathtt{20}}{\mathtt{\,\times\,}}{\mathtt{2}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\frac{{\mathtt{15}}}{{\mathtt{20}}}}\right)}}{{\mathtt{360}}}}{\mathtt{\,-\,}}{\mathtt{15}}{\mathtt{\,\times\,}}{\mathtt{20}} = {\mathtt{166.041\: \!867\: \!567\: \!676\: \!442}}$$
$$\tan^{-1} ( \frac{15}{20} )
= \tan^{-1}( \frac {1}{\frac{20}{15}} )
=\cot^{-1} ( \frac{20}{15} )
=\frac{180}{2}-\tan^{-1} ( \frac{20}{15} )\\
\Rightarrow$$
$$\left({\frac{{\mathtt{\pi}}}{{\mathtt{180}}}}\right){\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\frac{{\mathtt{20}}}{{\mathtt{15}}}}\right)}{\mathtt{\,\times\,}}\left({\mathtt{15}}{\mathtt{\,\times\,}}{\mathtt{15}}{\mathtt{\,-\,}}{\mathtt{20}}{\mathtt{\,\times\,}}{\mathtt{20}}\right){\mathtt{\,\small\textbf+\,}}{\frac{\left({\mathtt{\pi}}{\mathtt{\,\times\,}}{\mathtt{20}}{\mathtt{\,\times\,}}{\mathtt{20}}\right)}{{\mathtt{2}}}}{\mathtt{\,-\,}}{\mathtt{15}}{\mathtt{\,\times\,}}{\mathtt{20}} = {\mathtt{166.041\: \!867\: \!567\: \!676\: \!442}}$$
.