I'm trying to take an integral bounded below by zero and above by alpha of the sqrt(1-x^2) :
x=α∫x=0√1−x2 dx?
Substitute x only: x = sin(z) and dx = cos(z) dz
x=α∫x=0√1−sin2(z)⏟cos(z) dx⏞cos(z) dz=x=α∫x=0cos2(z) dz
Product rule (uv)' = u'v+uv'
u =sin(z) v =cos(z)
u'=cos(z) v'=-sin(z)
\textstyle{\left \textcolor[rgb]{1,0,0}{(} \sin{(z)}\cos{(z)} \right\textcolor[rgb]{1,0,0}{)'}=\cos{(z)}*\cos{(z)}+\sin{(z)}(-\sin{(z)})=\cos^2{(z)}-\sin^2{(z)}}
sin2(z)=1−cos2(z)
\textstyle{\left \textcolor[rgb]{1,0,0}{(} \sin{(z)}\cos{(z)} \right\textcolor[rgb]{1,0,0}{)'} =cos^2{(z)}-(1-cos^2{(z)}}) =-1+2\cos^2{(z)}
2\cos^2{(z)}=1+ \left \textcolor[rgb]{1,0,0}{(} \sin{(z)}\cos{(z)} \right\textcolor[rgb]{1,0,0}{)'} \quad | \quad \int
2∫cos2(z) dz=∫ dz⏟z+sin(z)cos(z)
∫cos2(z) dz=12(z+sin(z)cos(z))
Back substitute:
z=sin−1(x)sin(z)=xcos(z)=√1−x2
\begin{array}{rcl} \int\limits_{x=0}^{x=\alpha } \sqrt{1-x^2}\ dx &=& \left[ \dfrac{1}{2} \left( \sin^{-1}{(x)}+x\sqrt{1-x^2} \right) } \right]^{x=\alpha}_{x=0}\\\\ &=&\frac{1}{2} \left(\; \sin^{-1}{(\alpha)}+\alpha\sqrt{1-\alpha^2} \;\right) \end{array}
.