Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Nom d'utilisateurheureka
But26396
Membership
Stats
Questions 17
Réponses 5678

 #5
avatar+26396 
+11

I'm trying to take an integral bounded below by zero and above by alpha of the sqrt(1-x^2) :

x=αx=01x2 dx?

Substitute x only:   x = sin(z)   and    dx = cos(z) dz

x=αx=01sin2(z)cos(z) dxcos(z) dz=x=αx=0cos2(z) dz

Product rule (uv)' = u'v+uv'

u =sin(z)     v =cos(z)

u'=cos(z)     v'=-sin(z)

\textstyle{\left \textcolor[rgb]{1,0,0}{(} \sin{(z)}\cos{(z)} \right\textcolor[rgb]{1,0,0}{)'}=\cos{(z)}*\cos{(z)}+\sin{(z)}(-\sin{(z)})=\cos^2{(z)}-\sin^2{(z)}}

sin2(z)=1cos2(z)

\textstyle{\left \textcolor[rgb]{1,0,0}{(} \sin{(z)}\cos{(z)} \right\textcolor[rgb]{1,0,0}{)'}   =cos^2{(z)}-(1-cos^2{(z)}}) =-1+2\cos^2{(z)}

2\cos^2{(z)}=1+ \left \textcolor[rgb]{1,0,0}{(} \sin{(z)}\cos{(z)} \right\textcolor[rgb]{1,0,0}{)'} \quad | \quad \int

2cos2(z) dz= dzz+sin(z)cos(z)

cos2(z) dz=12(z+sin(z)cos(z))

Back substitute:

z=sin1(x)sin(z)=xcos(z)=1x2

\begin{array}{rcl}  \int\limits_{x=0}^{x=\alpha } \sqrt{1-x^2}\ dx &=&  \left[  \dfrac{1}{2}  \left(  \sin^{-1}{(x)}+x\sqrt{1-x^2}  \right)  }  \right]^{x=\alpha}_{x=0}\\\\  &=&\frac{1}{2}  \left(\;  \sin^{-1}{(\alpha)}+\alpha\sqrt{1-\alpha^2}  \;\right)      \end{array}

.
25 juin 2014
 #4
avatar+26396 
+6

(2x4+3x317x227x9):(x22x3)=2x2+7x+3(2x44x36x2)7x311x227x(7x314x221x)3x26x9(3x26x9)0

2x4+3x317x227x9=(x+1)(x3)(ax+b)(x+c)=(x+1)(x3)(2x2+7x+3)

(ax+b)(x+c)=2x2+7x+3(ax+b)(x+c)=ax2+(ca+b)x+bcCoefficient comparison:a=2ca+b=7bc=3

2c+b=7b=72cbc=3(72c)c=32c27c+3=0

c1,2=7±4942322=7±254=7±54c=c1=124=3c=c2=24=12b=b1=72c1=723=1b=b2=72c2=7212=6

1.

2x4+3x317x227x9=(x+1)(x3)(2x+b1)(x+c1)=(x+1)(x3)(2x+1)(x+3)

2.

2x4+3x317x227x9=(x+1)(x3)(2x+b2)(x+c2)=(x+1)(x3)(2x+6)(x+12)

.
24 juin 2014