$$\boxed{\mbox{Surface area of a sphere: } \quad S=\pi d^2}$$
$$S_{Titan}=\pi d_{Titan}^2$$
$$S_{Rhea}=\pi d_{Rhea}^2$$
$$\dfrac{S_{Titan}}
{S_{Rhea}}
=
\dfrac{\not{\pi} d_{Titan}^2}
{\not{\pi} d_{Rhea}^2}
=\dfrac{34}{3}$$
$$\dfrac{d_{Titan}^2}
{d_{Rhea}^2}
=\dfrac{34}{3}$$
$$d_{Titan}^2=d_{Rhea}^2*\left(\frac{34}{3} \right)$$
$$d_{Titan}=d_{Rhea}*\sqrt{\left(\frac{34}{3} \right)} \quad | \quad d_{Rhea}=1530\;km$$
$$\textstyle{d_{Titan}=1530\;km*\sqrt{\left(\frac{34}{3} \right)} =1530\;km*3.36650164612 = 5150.75\;km\approx5151\;km}$$
Diameter of Titan is 5151 km